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Algebraic structure of Green's ansatz and its q-deformed 
analogue 
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International Centre for Theoretical Physics. Trieste, Italy and 
Amold Sommerfeld InstifUte for Mathematid Physics, Technical University of Clausthal, 
38678 Clausthal-Zellerfeld, Germany 

Received 20 lune 1994, in final form 19 Septembei 1994 

Abstract. The algebraic structure of Green's ansatz is analysed in such a way that its 
generalization to the case of q-deformed para-Bose and para-Fermi openton becomes evident. 
To this end, the underlying Lie (super)alpbraic properties of the parastatistics are essentially 
used. 

In his first paper on parastatistics [l], Green developed a t e c h n i q u d e e n ' s  ansatz 
technique [2]-appropriate for constructing new (reducible) representations for any set of 
para-Bose (pB) or para-Fermi (pF) operators. Although quite clear as a mathematical device, 
the inner structure of Green's ansatz has  remained somehow not completely understood. For 
example, consider m pairs of pB creation and annihilation operators b:(p),  r = 1. . . . , m 
of order p .  Then, each such operator is represented by a sum 

where, for any value of k, the b:' operators obey the Bose commutation relations (here and 
throughout [ x ,  y1= X Y  - YX, { x ,  SI = XY + YX) 

[b;', b:] = S,, [bLk, b;k] = [b:, b:] = 0 V r ,  s (2) 

(b! ' , by ]=O V f , q = &  i # j ,  r , s .  (3) 

and, for i # j ,  all operators anticommute 

One natural question that arises in relation to the above construction is why the Bose 
operators partially commute and partially anticommute. Is there any deeper reason for this? 
The purpose of the present paper is to answer questions like this and, in fact, to show that 
Green's ansatz construction (1&(3) is a very natural method from the point of view of the 
Lie superalgebra (U). 

Much of the motivation for the present work stems from the recent interest in deformed 
pB and pF operators from various points of view: deformed paraoscillators [3-101 and, 
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more generally, deformed oscillators (see also [ I I ,  121 and references therein in this 
respect), supersingleton Fock representations of U,[osp( 1/4)] and its singleton structure 
[131, integrable systems [14-18] and q-parasuperalgebras [19]. 

In the applications mentioned above, one of the questions is how to construct 
representations of the deformed paraoperators. In the non-deformed case, Green's ansatz 
gives, in  principle, an answer to this question. Therefore, it is natural to try to extend the 
same technique to the deformed case. In the present paper, we will analyse the algebraic 
structure of Green's ansatz in such a way that its generalization to the quantum case will 
become evident. To this end, we essentially use the circumstance (see also corollary I )  that 
any n pairs F:, . . . , F.' of PF operators generate the simple Lie algebra so(2n + 1) [20, 211, 
whereas m pairs of pB operators B:, . . . , E," generate an W [22]. which is isomorphic to 
the basic LS osp(l j2m) [23], denoted also as B(O/m) 1241. 

In order to be slightly more general and to treat the pB and the pF operators 
simultaneously, denote a 2(m + n)-dimensional &graded linear space (Zz = (0.1)) by 
G ( n / m )  with a basis as follows: 

(4) even basis vectors C,?(O) = F: 

odd basis vectors CF(1) B,' i = 1 , .  . . , m .  (5) 

j = 1, . . . , n 

Let U(n/m)  be the free associative unital (= to unity) superalgebra with generators (4) and 
(3, grading induced from the grading of the generators, and relations 

(6) 

where 6 ,  7, E = f, a, ,9. y E & and i, j ,  k take all possible values according to (4) and 
(5).  In (6) and throughout, , n is a supercommutator. defined on any two homogeneous 
elements a, b from U ( n / m )  as 

(7) 

noc!(a), c,%m C w i  = 2Ey6py8jk&-qci I (a) - 2&Y(--I)BY$y6ik6e,- iCj"( ,9)  

[[U. b]l = a b  - (-1) dM4&s(b)ba, 

In the c a e  a = ,9 = y = 0, equation (6) reduces to 

[IF!, F;], F,?] = 28j&-vF! - 26ik8,*-<Fjq 

[ ( E ! ,  E;] ,  B;] = 2&8jk6,,-,B/ -t b&k&-(B,?.  

(8) 

whereas, for a = ,9 = y = 1, it gives 

(9) 

Equations (8) and (9) are the defining relations for the pF and pB operators, 
respectively 111. 

Relations (6) define a structure of a Lie-super triple system [U]  on G ( n / m )  c U ( n / m )  
with a triple product G ( n / m )  @ G ( n / m )  r3 G ( n / m )  + G ( n / m )  defined as 

UUx, yD, zll = 2(ylz)x - 2(-l)des(r)deg(y)(xI~)y E G ( n / m )  Vx .  y, z E G ( n / m )  (10) 

where the bilinear form ( x l y )  is defined in agreement with (6) to be [U] 

(C!(a)lCj"(,9)) = V"&j~, ,~ , , - ,  c, 7 = ~ as,9 E &. (11) 

Consider U ( n / m )  as an LS with a supercommutator (7). Then it is straightforward to 

(12) 

check that ( h e n v .  = linear envelope) 

B W m )  = lin.env.UCf(ol). CjR(B)B, Ci(y ) lV i ,  j ,  k ,  $, v. E = *, a,& Y E &I 
is a subalgebra of the LS U ( n / m ) .  
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Proposition I 1261. The LS B(n/m)  is isomorphic to the orthosymplectic LS osp(2n + 
1/2m). The associative superalgebra U(n/m)  is its universal enveloping algebra U[osp(Zn+ 
1/2m)l. 

The first part of the proposition was proved in [26].  The second part follows from the 
following two observations: 

(i) the supercommutation relations between all generators of osp(2n + 1/2m) (which 
constitute a basis in the underlying linear space) follow from relations (6)  between only the 
Lie-super triple generators (4 )  and (5); and 

(ii) the universal enveloping algebra of a given LS is the free associative unital algebra 
of its generators and the supercommutation relations they satisfy. 

Observe that everywhere in the above considerations, the p~ operators appear as even 
(i.e. bosonic) variables, whereas the pB are odd (i.e. fermionic) operators. Moreover. the pB 
do not commute with the pF. Okubo [25] and Macfarlane [15] have also recently arrived at 
this same conclusion. 

As an immediate consequence of the above proposition, we have the following corollary. 

Corollary 1. 
(i) [20,21] The free associative unital algebra of the pF operators (4) is isomorphic to 

the universal enveloping algebra U[so(2n + l ) ]  of the orthogonal Lie algebra so(2n + 1 ) :  

so(2n + 1) = lin.env.{[Fif, F:], F,Bli, j .  k = 1 , .  . . , n;  t ,  rl, E = *] c U[so(2n + I ) ] .  (13) 

(ii) 1231 The free associative unital algebra of the pB operators (5) is isomorphic to the 
universal enveloping algebra U[osp(l /2m] of the orthosymplectic LS osp(lj2m): 
osp(ll2m) = lin.env.{{Bi. F R  B j } ,  B,Eli, j ,  k = 1,. . . , m; c,  0, E =it] c U[osp( l /2m) ] .  (14) 

Corollary 2. The representation theory of the Lie-super triple system G ( n / m )  with 
generators (4), (5) and relations (6) is completely equivalent to the representation theory 
of the orthosymplectic LS osp(2n + l / 2 m ) .  In particular, the problem of constructing the 
representations of n pairs of pF operators (4) is equivalent to the problem of constructing 
the representations of the Lie algebra so(2n + 1); similarly, the representation theory of m 
pairs of pB operators is the same as the representation theory of the LS osp(ll2m). 

The finite-dimensional representations of so(2n+l) are known; they have been explicitly 
constructed [27].  All representations of the pF operators corresponding to a fixed order of 
the parastatistics are among the finite-dimensional representations. The pF operators have, 
however, several other representations 1281, including representations with degenerate vacua. 
In a more practical aspect, the results of [27] are, unfortunately, not so useful for the PF 
statistics. The point is that the transformation relations of the Gel’fand-Zetlin basis in [27] 
are given for a set of 2n operators (generating all the rest of the 2n2 + n generators), which 
are different from the pF operators and also different from the 3n Chevalley generators. The 
relations between the pF operators and the operators used in [U] are not linear. 

The above corollaries are not of great practical use for the representations of the p~ 
operators or, more generally, of the Lie-super triple system G(n/m) .  So far, only the 
finitedimensional representations of osp(2n + l /Zm) have been classified 1291. Explicit 
expressions for the matrix elements are available only for low-rank algebras (see [30] 
and references therein). Moreover, the interesting representations of the PB operators are 
infinite-dimensional. The Lie-super triple system G ( n / m )  and, hence, osp(2n + 1/2m) 
have, however, one simple but important representation: the Fock representation, which is 
of particular interest for our considerations. 
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Proposition 2 1261. Denote by W(n/m) the antisymmebic Clifford-Weyl superalgebra, 
namely, the associative algebra generated by n pairs of Fermi crration and annihilation 
operators (CAOS) f,' C?(O), i ,  j = I ,  . . . , n 

[.if3 J;"I (cf(o), C;(O)I = Jijsc.-n t, v = f (15) 

and m pairs of Bose CAOS b: c?(l), i. j = I , .  . . , m 

[bf. b:] [ ~ f ( l ) , ~ J ( l ) ]  ~ 8 i j X c , - , ,  e, v = f (16) 

under the condition that the Bose operators anticommute with the Fermi operators 

[f, b?) z ( c f ( O ) , c ~ ( l ) ]  = 0 j = 1 , .  . . , m. (17) 

W(n/m) is an associative superalgebra with grading induced from the requirement that the 
Fermi operators are even elements and the Bose operators are odd. Consider W(n/m) 
as an algebra of (linear) operators in the corresponding Fock space H = H(n/m), 
W(n/m) c End(H). Then, the map 

e ,  q = & i = 1 , .  . . , n 

n : osp(2n + 1/2m) + W(n/m) defined as n(Ci 6 (or)) = cf(or) V {  = f and i 

(18) 

is a Fock representation of osp(2n+ 1/2m) or a representation of the Lie-super triple system 
G(n/m),  which are the same. 

In order to prove the proposition, one has simply to check that relations (6) remain valid 

In the case of so(2n + I), or equivalently of n pairs of pF operators (resp. of osp(l/2m) 
or equivalently of m pairs of p~ operators), proposition 2 reduces to the usual representation 
of the pF operators with Fermi operators (resp. of the pB operators with Bose operators). 

The conclusion, relevant for us, is that operators (4) and (5) generate an associative 
superalgebra, namely, U[osp(2n + 1/2m)l (proposition 1) and that we know at least one 
representation of U[osp(2n + 1/2m)], namely its Fock representation (proposition 2) .  

For simplicity, set L = osp(2n + 1/2m). U = U[osp(2n + 1/2m)] and let L@P and 
U@" be their pth tensorial powers. Introduce the following notation (e is the unity of U): 

after the replacement Cf(or) + ci E (or). 

mat  el @ . . . e k - l ~ a @ e ~ + l @ . . . ~ e p l a ~  ~ e i  = e v i # k ] .  (19) 

U k = [ e l  @... e k _ l @ u ~ e k + , @ . . . ~ e , l u ~ ~ e i  = e V i # k ] .  (20) 

Then, the map rx : L + L' c U k  

rk(a) =el @ . . . e k - l  @ a @ e k + l @ . . . ~ e ,  a E L  ei =evi  # k  (21) 

is an LS morphism of L onto L'; the same map (21) considered for all (I E U is an 
associative algebra morphism of U onto U'. 

The set of elements (21) generate U' and, since 

U " P = U ~ U 2  . . .  u p  (22) 

the elements (21) considered for all k = 1, . . . , p generate U@P. 
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The sum 

A(P) = 5' + r2 + . . . + p : L -+ L@P (23) 

is an Ls morphism, the 'diagonal' Ls morphism, of L into Lap, which is extended to a 
morphism of the associative algebra U into the associative algebra U@P in a natural way 

A ( P ) ( Q ~ Q . .  .a,) = A @ ) ( U ~ ) A ( P ) ( U ~ ) .  . . A('')@,) VQ' .  a2, .  . . ,a, E L.  (24) 

Let n', n',. . . , H P  be (not necessarily different) representations of L = osp(2nf 1/2m) 
(and, hence, of U = U[osp(Zn + 1/2m)]) in the &-graded linear spaces HI, H2,. . . , HP, 
respectively, i.e. the operators H'[C:(~)] E End(H')), k = 1, . . . , p satisfy the Lie-super 
triple relations (6) and 

deg[n'[C:(a)]) =a. (25) 

Then 

H' @ H' @ . . . @ np : -+ End(H' @ H2 @ . . . @ U p )  (26) 

gives a representation of both the Ls A@P(L) and of the associative algebra U @ p .  The 
composition maps (k = 1, . . . , p )  

(n' @ H *  @ . . . @ r r p )  o r' : U[osp(& + 1/2m)] + End(H1 @ H2 @ . , . @ H p )  (27) 

(nl @ n2 @ . . . @ H ~ )  o A(") : U[osp(2n + 1/2m] + End(H' @ H 2  @ . . . @ H p )  (28) 

give representations of both the LS osp(2n + 1/2m) and the associative algebra U[osp(2n + 
1/2m)]. Therefore, the operators 

t y ( a )  = [ ( H I  @ x2 @ .. . @  H " )  o r k i  IC, (a) 

= id' @ . . .@id - '  @n'[Cf(or)] @id*' @ . . .@idP E End(H' @Hz@. . .@HP) 
k = l ,  . . . , p  a = *  (29) 

and 

satisfy the Lie-super triple relations (6). From the very definition of a tensor product of 
associative algebras [31], we obtain (for all r, s according to (4) and (5) and [, r~ = k) 

~ t f ' ( a ) ,  t,;j(s)n = $'(a)t;j(s) - (-~)@t,!j( ,~)t?(a) = o i # j = I , ,  , . , p .  (31) 

In particular, for a = 1, 

6:k 2:'(1) = id' @ . . . @ idk-' @nk(Bf )  @ idk+' @ , ,  , @ idp (32) 



7378 T D Palev 

and 

{ 6 ! i , 6 , y j ) = ~  i + j = l ,  ..., p ,  r , s = ~  ,..., m ,  t , q = r t  (34) 

whereas the operators 6fk with the same upper-case index k satisfy the PE relations (9) and 
maybe also, particularly for the representation nk, other relations. 

Similarly, for a = 0, 

xe = E:'(O) = id1 @ .  . . @ id-' @nk(F,?) @ idt' @ .  . . @id'' (35) 

and 

[ f F ' f ^ n j 1 = 0  I ,  3 i # j = ~  ,..., p ,  r , s = l  ,..., n, t , q = * ,  (37) 

Consider now the important case when all representations nl, z2, . . . , K O  are the same 
and coincide with the Fock representation, namely, K is a morphism of U [ o s p ( h +  1/2m)] 
onto the Clifford-Weyl algebra W(n/m)  defined in (18) 

= == = .. . KP = K. (38) 

In order to distinguish this particular case, we do not write any more hats over the operators. 
Then, from (30), we obtain 

where according to (29) and (18) 

$'(a) = id' @ . ,. @ id-' @c:(a) @ idt1 @.. . @ idp k = l .  . . . , p  a = *  

(40) 

ocF'(a), 4cs )n  = ~ ~ 8 , , 8 ~ ~ 8 & . - ~  6, v = rt 01, B E zz. (41) 

and the operators cf"(a)  satisfy, according to (15)-(17) and (31), the relations (see (7)) 

Setting b f ( p )  = c:(p,  I), we obtain from (39) and (41) Green's ansatz for the PE 
operators of order p 

where 

bf' = id' @ . . . @id-' @b: @ i&' 8 . .  . @ idp k = l ,  ..., p r = l ,  ..., m. 

(43) 
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As follows from (40) (or immediately from (43). taking inm account that b: are odd 
operators), the Bose operators b:k partially commute and partially anticommote. More 
precisely, 

[bTk, b:l = &? W; ' b, .-Ic 1 - - [ bk,b'] I = 0 V k , r , s  f44) 

and, for i # j ,  all operators anticommute 

(bf', b,:'] = 0 ( , q = *  i # j .  (45) 

Similarly, setting f,%) = c,"(p, O), we obtain, from (39) and (41X Green's ansatz for 
the pF operators of order p 

where 

f," = id' @ , , , 8 id-' @ f,? 8 id'' @ . . . @ id" k = l  ....,p r = l ,  ..., n. 

(47) 

Setting a = 0 in (40) (or directly from (47), taking into account that f: are even operators), 
one obtains 

If;'. j3 =A,,, f;'I = If,", .& = 0 Vk,r , .s  (48) 

and for i # j all operators commute 

[f:i, f,"'] = 0 (, r) = f i # j .  (49) 

From the above considerations, it is clear that Green's ansatz repFesentation (46) of 
the p~ operators of order p is simply given as a representatioaof the PF operators f:(p), 
considered as generators of the universal enveloping algebra U[so(2n + l)]) in-the tensor 
product of p copies of (irreducible, finite-dimensional) Fock representations of the Lie 
algebra so(7.n + 1). 

Similarly, Green's ansatz representation (42) of the PB operators of order p gives a 
representation of the pB operators in the tensor product of p copies-of (irreducible, infinite- 
dimensional) Fock representations of the Ls osp(l/2m). 

Equations (39) and (41) generalize the concept of Green's ansatz to the case of Lie-super 
triple operators (4) and (5), which are free generators, with relations (6). ofthe universal 
enveloping algebra U[osp(Zn+ I/2m)]. The representation of the generators C;"(a) (= the 
representation of osp(7.n + I/Zm)) is realized in the tensor product space H"P of p copies 
of Fock representations (18) of osp(7.n + 1/2m). Therefore, Green's ansatz gives a highly 
reducible representation of the Lie-super 'triple operators. In particular, this is. the case if 
only pB or pF operators are present. If 10) E H is the highest-weight vector. in H, then the 
irreducible subspace, containing IO)@P E H a p ,  carries a -representation corresponding to an 
order of statistics p .  The other irreducible components of H@P also contain vacuum-like 
states and among these are the highest-weight 'vectors. The corrbsponding .representations, 
however, no longer correspond to representations with -a fixed statistical order, namely 
to representations with unique vacuum states (see, for example, [28]). The problem to 
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decompose H@P into a direct sum of irreducible subspaces with respect to the para-operators 
(= with respect to osp(2n + 1/2m)) or even the simpler problem-to extract the irreducible 
submodule carrying only the representation with a statistical order p-has not been solved 
so far, The problem is also not solved for the case of only p~ (m = 0) or pB (n = 0) 
operators. 

Passing to a discussion of a possible generalization of Green’s ansatz (39) to the case 
of deformed operators, we first observe that, in all cases, Green’s ansatz is obtained (see 
(39), (42) and (46)) as a two-step procedure, namely as a composition of two (associative 
algebra) morphisms: 

A ( P )  : ~ [ o s p ( 2 n  + 1/2m)]  -+ ~ [ o s p ( h  + 1/2m)]@p 
II@” : U[osp(2n + 1/2m)]@p -+ E n d @ ‘ ) .  (50) 

In the following, we consider only (one-parameter) deformations of the Lie-super hiple 
generators (4)  and (5) which generate a Hopf deformation U,[osp(h + 1/2m)] of 
U[osp(2n+ 1/2m)] .  By a Hopf deformation, we mean a deformation of U[osp(Zn+ 1/2m)] 
which preserves its Hopf algebra smcture (as defined, for instance, in [32]) .  

The deformed version of Green’s ansatz of order p will be based on a deformation of 
relation (39),  namely, 

cf(p, a) = [nap o A‘p’ ]Cf (a ) .  (51) 

To this end, we need to define deformed versions of the operators A(P) and n@P so 
that they remain morphisms and deformed Lie-super hiple generators C,”(a), = C:(cu) 
(whenever possible, we suppress the subscript q for the deformed objects). 

In order to define a deformed analogue of the operator A(p), we use the circumstance 
that the superalgebra U = U[osp(2n+ 1/2m] is a Hopf superalgebra with a comultiplication 
A ,  defined as 

A ( a ) = a @ e + e @ a  V ~ E L  A ( e ) = e @ e .  (52) 

From (21) and (23), we deduce that 

A @ )  = A A(3) = ( i d @ A )  0 A @ )  A(k) = [(@(k-”) @ A ]  A(X-1). (53) 

The important point is that the operators A*) also preserve the property to be morphisms 
after the quantization (= Hopf deformation) of U ( L ) ,  i.e. the map 

(54) 

is an associative algebra morphism. Certainly, in the deformed case, equation (52) has to be 
replaced with the corresponding expression for the comultiplication on U9[osp(2n+ 1/2m)] .  

In order to determine the deformed analogue of the operator n@P, we observe that if 
II : U9[osp(2n + 1/2m)l + End(H) is a representation of U9[osp(2n + l / Z n ) ]  in the linear 
space H, then 

(55)  

is a representation of U,[osp(Zn + l /Zm)]@P. In the non-deformed case, n is a morphism 
of U[osp(2n + I/Zm) onto the Clifford-Weyl algebra W ( n / m )  (see (18)).  Therefore, it is 
natural to assume that, in the deformed case, II is a morphism of U9[osp(2n+ I/2m)]  onto 
a deformed algebra W,(n/m). We recall the definition [33].  

A ( P )  : ~ , [ o s p ( 2 n  + 1/2m)] -+ ~,[osp(~n + 1/2m)]@p 

nap : U9[osp(2n + l / 2m) ]@P --i End(H@P) 
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Definition I .  The deformed antisymmetric Clifford-Weyl superalgebra Wq(n/m)  is an 
associative unital superalgebra with free generators A*, kj(0)  = k+(O), k;(O),  i = 1,. . . , n 
and b:, kj(1) k:(l), k;(l), j = 1,. . . , m, which obey the relations 

k,(O)kj(O) =kj(O)ki(O) ki(O)k;(O) = 1 k,(o)&e = q ' a " p i ( 0 )  (564 

The grading on W,(n/m) is induced from the grading of its generators 

de&) = deg(kj(0)) = deg(ki(1)) = 0 deg(b;) = 1. (59) 

In the n = 0 case, W,(O/m) is the associative superalgebra, generated by m triples b:, 
k,  = q N r ,  r = 1, .  . . , m of commuting deformed Bose operators, as defined in [34-36]. It 
is described by equations (57) and N ,  is the rth boson number operator. In the m = 0 case, 
W,(n/O) is the associative algebra of 3n triples of deformed Fermi operators [37],  given 
by equations (56). 

It remains to determine the deformed creation and annihilation operators. This problem 
is, so far, only partially solved. The definition of m pairs of deformed PE operators B;, i = 
1, .  . . , m, which together with the 'Cartan' elements K,, . . , , K, generate Uq[osp(l/2m)], 
was given in [91. In terms of  the Chevalley generators Ei, Fi,  Ki, i = 1, . . . , m they read 
(i = 1,. . . , m - 1) 

x K, Kj+, . . . K, 



7382 T D Palev 

The morphism n of UY[osp(l/2m)] onto W,(O/m), namely the operators n(ET) E 
W,(O/m), were constructed in [91. In [SI (in somewhat different notation), we have shown 
that the Chevalley generators can be expressed in terms of the 3n pre-oscillator generators 
E, , K;, i = 1, . . . , m, thus giving a new definition of Uq[osp(l/2m)] entirely in terms of 
the preoscillafor generators. Thus, we are ready to state the following result. 

Proposition 3. If n is the Fock representation of Uq[osp(l/2m) [9] (resp. of Uq[so(2n + 
1)l) and A(") is the nth-order coproduct operator (54), then equation (SI) defines the 
deformed analogue of Green's ansatz of order p for m pairs of deformed PB operators 
(resp. for n pairs of deformed pF operators). 

* 

The proof is evident since tbe composition of the morphisms and A('') is also a 
morphism. Hence, the operators c:(p,ff), = c!(p,ff), defined by (54), satisfy the same 
relations as in the limit q + 1, they reduce to the corresponding non-deformed p~ 
or pF operators of order p.  

Proposition 3 could also be extended to deformed Liesuper triple systems. So far, 
however, such a deformation has been carried out only for the case n = m = 1 [33]. 

As an example, we consider in more detail Green's ansatz of order p = 2 related 
to Uq[osp(f/4)], namely, the ansatz corresponding to two pairs of deformed pB operators 
@(2) and bF(2) [391. To this end, we recall first the definition of Uq[osp(l/4)] in terms of 
its Chevalley generators. We choose the Cartan matrix ( o r i j )  as in [40], i.e. this is a 2 x 2 
symmetric matrix with 

all=2 LYu=l ff12=ff2j=-1. (62) 

Then Uq[osp(l/4)] is the free associative superalgebra with Chevalley generators E;, f i ,  
Ki, i = 1,2, graded as 

deg(Ez) = deg(F2) = I (63) 

which satisfies the Cactan relations 

dsg(E1) = deg(F1) = deg(K1) = deg(K2) = 0 

K~K;' = K ; ' K ~  = 1 ~ i ~ j  = ~ j ~ i  i, j = 1.2, (64) 

K; Ej =quiJ EjKi KiFj  = q-#iiF'.K. , I 4j = 1,2, (65) 

(66) 

the Serre relations for the simple positive root vectors 

E;Ez - (9' + q-')EjE2EI + EzEf = 0 (67) 

E;EI + ( 1 ' - q 2 - 4 - ~ ) ( E ~ E I E Z + E z E I E ~ ) + E l E :  = o  (68) 

and the Sene relations obtained from (67)-(68) by replacing everywhere Ei by 4. 
The action of the coproduct A : U, -+ U, @ U, can be given as (i = 1.2) 

A(Ei) = Ej 9 Ki + K-' @ E ;  A(Fi) = Fj @ Ki + KT' @ Fi A(Ki) = Ki @ K j .  

(69) 
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In the n = 2 case, we obtain, from (60) and @I),  the expressions for the deformed p~ 
operators 

B; [ E l ,  K I  K2 B -  - (70) 

and 

-JT (4 + q - 9  

From (69)-(71), and using the circumstance that the comultiplication is an algebra 
morphism, we obtain 

A(B:) =q-'"B:@ K I K ; ~ + ~ - ~ / ~ K ; ~ K ; ~ @  B: 

(72a) -1/2 B+ - I  -I + ( q  - d ) q  2 1 2 @lB;,B:Jq-ZK;l 

A ( B ; )  =q3/ 'B;@ K1K:+q1'2K;1Ki@B; 

+(q-' -q)q ' / ' (B; ,  B :Jq~Kz@ B;KiKz (724  

A(K: )  = qF/'K! @ Kf i = 1 ,2  6 = f t .  ( 7 2 4  

A ( B , " = q " 2 B : @ K 2 + q - ' / 2 K ~ 1 @ B B b  Z = %  ( 7 2 ~ )  

The morphism x of Uq[osp(l/4)] onto W(0/2)  is easily expressed on the deformed p~ 
operators (ki = ki(1)):  

x ( B i  - - b* i x ( K i )  = ki E 9 i = 1,2. (73) 

In order to obtain Green's ansatz of order two (see (51)), it remains to apply the operator 
x @r on the right-hand side of expressions (72). Following (32), we generalize the standard 
Green ansatz notation: 

b:") = b' @ e 

k:(') - - q  *"" k: @ e ki *(*) - - q *"I e @ k: i = 1, 2. (74) 

b:(') = e @ b: 

In equation (74), e is the unity in W(0/2) ,  which, considered as an operator, is the unit 
operator e = id. From the definition of the (graded) tensor product, it follows that (34) 
holds, namely 

(b"", b ~ ( " J  = 0. (75) 

Moreover, the operators k:") commute with b;"), k"" and k"" commute with b;"', 
k:") for any i, j = 1,2. 
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Applying K @I K to the right-hand side of (72), we obtain, for the q-deformed Green 
ansatz operators, the following expressions: 

+(I) N ~ ) - z N ~ ) - I / z  + q - ~ I ' l - z ~ f 1 - 3 / z  +(z) 
b:(2) =bl 4 bl 

(764 + ( q l / 2  - q-7/2)b+(l) -Nj"-N:"b+(Z)b-(Z) -Nf) 
2 4  I 2 4  

b;(2) = b;(l)qNr)+ZNf)+3/Z + q - N ~ " t 2 N ~ 1 + l / Z b - ( Z )  
I 

(76b) 112 - 7/2 - ~ I ) ~ + ( I )  N") -(a N ? ) + N ~ )  +(q-  4 2 q ' b ,  4 

= @l)qN?1+l/2 + q-N:')-l/z$(2) 2 = 4, (77) 

At q = I ,  the above expressions reduce to the p = 2 relations (1) for two pairs of pB 
operators. 

The example above indicates that the structure of the deformed Green ansatz is more 
involved. There is, in particular, a big asymmetry between the first pair of operators b7(2), 
and the second pair b:(2),. As a result, the problem of decomposing the tensor product of 
two Fock representations into a direct sum of irreducible representations of osp(l/4) [41] 
becomes very difficult in the deformed case. So far we have not been able to solve it. 

The asymmetry that appears in (76) and (77) is a consequence of the very different 
expressions for the comultiplication acting on different pairs of deformed p~ operators 
(see equations (72)). The latter have been derived from the quite symmetrical expressions 
(69) for the comultiplication defined on the Chevalley generators. We believe it will be 
possible to write down new symmetric expressions for the comultiplication and. hence, 
for the deformed Lie-super triple generators (5). To this end, one has to perhaps use 
multiparametric deformations of U[osp(Zn + 1/2m)], as indicated in [42J. The requirement 
that Uq[osp(2n + l/Zm)] is a Hopf algebra is also unnecessarily strong. For our 
considerations, it is sufficient that Li,[osp(Zn -+ l/Zm)] is a coalgebra or even less, namely, 
that there exists a comultiplication which is an algebra morphism, but this is certainly 
another open problem. 
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